
THE LECTURE 4

SQL QUERIES

SQL

 Standardized

 Data Manipulation and Data Definition

 Can be embedded into general programming languages

 Statements specify what is to be done, NOT how to do it

DML - RETRIEVAL

 SELECT statement - can do MANY different things

 List whole table

SELECT * FROM STUDENT

 Relational Algebra PROJECT

SELECT StdID, LNAME, FNAME

FROM STUDENT

 Unlike RA, duplicates aren’t (automatically) removed. E.g.

SELECT MAJOR

FROM STUDENT

 If we want duplicates removed, specify DISTINCT after SELECT

SELECT DISTINCT MAJOR

FROM STUDENT

DML - RESTRICT

 Relational Algebra RESTRICT/SELECT

 e.g. list all students who are freshmen

SELECT *

FROM STUDENT

WHERE YEAR = ‘Fr’

 PROJECT and RESTRICT together

SELECT StdID, LNAME, FNAME

FROM STUDENT

WHERE YEAR = ‘Fr’

MORE RETRIEVAL

 WHERE condition can be as complicated as you need it to be. E.g. freshmen with poor grades

SELECT StdID,LNAME,FNAME

FROM STUDENT

WHERE YEAR = ‘Fr’ AND GPA < 2.5

ORDERING

 With a little extra complexity, we can get our output in order by some particular attribute(s) E.g. order students

by major

SELECT StdID,LNAME,FNAME, MAJOR

FROM STUDENT

ORDER BY MAJOR DESC

JOINING TABLES

 As you know, an important task with relational databases is relating info from more than one table (for instance,

natural join in RA) E.g. show all students with the class indices of enrollments

SELECT StudID,LNAME,FNAME, INDEX

FROM STUDENT, ENROLLMENTS

WHERE StudID = Enrollments.Student

RESTRICT WITH JOIN

 Sometimes you don’t want the entire join - you might want to restrict the results (sometimes called select-

project-join) E.g. show all students enrolled in a particular section

SELECT StdID, LNAME, FNAME

FROM STUDENT, ENROLLMENTS

WHERE STUDENT. StdID = ENROLLMENTS.Student

AND ENROLLMENTS.INDEX = 70238

MULTI-WAY JOIN

 We can join more than two tables together (which is a good thing; joining students with enrollments was a little

unsatisfying because we didn’t see any info about the section. Let’s show all students with the section info for

sections they enrolled in

SELECT STUDENT.*, SECTION.*

FROM STUDENT, ENROLLMENTS, SECTION

WHERE STUDENT.StdID = ENROLLMENTS.Student

AND ENROLLMENTS.INDEX = SECTION.INDEX

ALIAS

 Alternate name (for a table)

 SELECT STUDENT.*, SECTION.*

FROM STUDENT A, ENROLLMENTS B, SECTION C

WHERE A.StdID = B.student AND B.index = C.index;

 Here A,B, and C are aliases

 Used as a convenience, not necessary

QUERIES

 Special Operators

 BETWEEN - used to define range limits.

 IS NULL - used to check whether an attribute value is null

 LIKE - used to check for similar character strings.

 IN - used to check whether an attribute value matches a value contained within a (sub)set of listed values.

 EXISTS - used to check whether an attribute has a value. In effect, EXISTS is the opposite of IS NULL.

 Can also be used to check if a subquery returns any rows

 Special Operators

BETWEEN is used to define range limits.

SELECT *

FROM STUDENT

WHERE GPA BETWEEN 2.0 AND 2.1;

QUERIES

 Special Operators

IS NULL is used to check whether an attribute value is null.

SELECT INDEX, DEPT, CLASS, TIME

FROM SECTION

WHERE ROOM IS NULL;

QUERIES

 Special Operators

LIKE is used to check for similar character strings.

SELECT * FROM CATALOG_CLASS

WHERE TITLE LIKE ‘%Lang%’;

 % stands for 0 or more char wildcard

 _ stands for a one char wildcard

 e.g. WHERE TITLE LIKE ‘%Network%’ finds classes whose title includes the substring ‘Network’

 NOTE: While SQL commands are not case-sensitive, SQL strings are

QUERIES

 Special Operators

IN is used to check whether an attribute value matches a value contained within a

(sub)set of listed values.

SELECT * FROM ENROLLMENT

WHERE INDEX IN (66415, 66421);

EXISTS is used to check whether an attribute has value.

SELECT * FROM SECTIONs

WHERE PROFESSOR EXISTS;

QUERIES

SOME SQL NUMERIC AGGREGATE FUNCTIONS

AGGREGATE FUNCTIONS - AVG

 e.g. find ave GPA for all students

SELECT AVG(GPA)

FROM STUDENT

 What is the average GPA of all freshmen

SELECT AVG(GPA)

FROM STUDENT

WHERE YEAR = ‘Fr’

COUNT

 How many sections are offered

SELECT COUNT(*)

FROM SECTION

 How many computer science majors are there?

SELECT COUNT(*)

FROM STUDENT

WHERE MAJOR = ‘CS’

 How many distinct classes are being offered

SELECT COUNT(DISTINCT DEPT,CLASS)

FROM SECTION

GROUP BY - SUBTOTALS

 Total Enrollments by Dept

SELECT DEPT, SUM(enroll)

FROM SECTION

GROUP BY DEPT

HAVING

 Total Enrollments by Dept for depts offering more than 10 sections

SELECT DEPT, SUM(enroll)

FROM SECTION

GROUP BY DEPT

HAVING COUNT(*) > 10

 Average Evening Enrollments by Depts with low ave enrollment

SELECT DEPT, AVG(enroll)

FROM SECTION

WHERE Sect >= 40

GROUP BY DEPT

HAVING AVG(enroll) < 15

HAVING

 Total Enrollments by Dept for depts offering more than 10 sections

SELECT DEPT, SUM(credits)

FROM CATALOGCOURSE

GROUP BY DEPT

HAVING COUNT(*) > 10

 Average Highest Enrollment (capacity) for upper division courses by Depts – for depts with many upper

division sections

SELECT DEPT, AVG(MaxEnroll)

FROM SECTIONS

WHERE Course >= 200

GROUP BY DEPT

HAVING COUNT(*) >= 10

NESTED QUERIES

 Sometimes the result of one query can be used in another query - thus we can have nested queries

 e.g. find students whose GPA is above average

SELECT *

FROM STUDENT

WHERE GPA > (SELECT AVG(GPA)

FROM STUDENT)

NESTED QUERIES

 If is fairly common for a nested query to use the set operation IN - which tests whether a value is a member of

a set of values. So for instance, suppose we want to know all sections in which there are any freshman

SELECT DISTINCT CLASSINDEX

FROM ENROLLMENTS

WHERE STDSSN IN (SELECT SSN

FROM STUDENT

WHERE YEAR = ‘Fr’)

LEFT OUTER JOIN

SELECT P_CODE, VENDOR.V_CODE, V_NAME

FROM VENDOR LEFT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE

RIGHT OUTER JOIN

SELECT PRODUCT.P_CODE, VENDOR.V_CODE, V_NAME

FROM VENDOR RIGHT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE

